Stratospheric variability and tropospheric annular‐mode timescales
نویسندگان
چکیده
[1] Climate models tend to exhibit much too persistent Southern Annular Mode (SAM) circulation anomalies in summer, compared to observations. Theoretical arguments suggest this bias may lead to an overly strong model response to anthropogenic forcing during this season, which is of interest since the largest observed changes in Southern Hemisphere high‐latitude climate over the last few decades have occurred in summer, and are congruent with the SAM. The origin of this model bias is examined here in the case of the Canadian Middle Atmosphere Model, using a novel technique to quantify the influence of stratospheric variability on tropospheric annular‐mode timescales. Part of the model bias is shown to be attributable to the too‐late breakdown of the stratospheric polar vortex, which allows the tropospheric influence of stratospheric variability to extend into early summer. However, the analysis also reveals an enhanced summertime persistence of the model’s SAM that is unrelated to either stratospheric variability or the bias in model stratospheric climatology, and is thus of tropospheric origin. No such feature is evident in the Northern Hemisphere. The effect of stratospheric variability in lengthening tropospheric annular‐mode timescales is evident in both hemispheres. While in the Southern Hemisphere the effect is restricted to late‐spring/early summer, in the Northern Hemisphere it can occur throughout the winter‐spring season, with the seasonality of peak timescales exhibiting considerable variability between different 50 year sections of the same simulation. Citation: Simpson, I. R., P. Hitchcock, T. G. Shepherd, and J. F. Scinocca (2011), Stratospheric variability and tropospheric annular‐ mode timescales, Geophys. Res. Lett., 38, L20806, doi:10.1029/ 2011GL049304.
منابع مشابه
On the Northern Annular Mode Surface Signal Associated with Stratospheric Variability
The wintertime northern annular mode (NAM) at the surface is known to undergo slow intraseasonal variations in association with stratospheric variability, which leads the surface signal by up to several weeks. The relative contributions, however, of potentially relevant stratosphere–troposphere coupling mechanisms are not yet fully understood. In this study the relative roles of (i) the downwar...
متن کاملSouthern Annular Mode Dynamics in Observations and Models . Part I : The Influence of Climatological Zonal
A common bias among global climate models (GCMs) is that they exhibit tropospheric southern annular mode (SAM) variability that is much too persistent in the Southern Hemisphere (SH) summertime. This is of concern for the ability to accurately predict future SH circulation changes, so it is important that it be understood and alleviated. In this two-part study, specifically targeted experiments...
متن کاملStratosphere–Troposphere Coupling in the Southern Hemisphere
This study examines the temporal evolution of the tropospheric circulation following large-amplitude variations in the strength of the Southern Hemisphere (SH) stratospheric polar vortex in data from 1979 to 2001 and following the SH sudden stratospheric warming of 2002. In both cases, anomalies in the strength of the SH stratospheric polar vortex precede similarly signed anomalies in the tropo...
متن کاملInfluences of ENSO on Stratospheric Variability, and the Descent of Stratospheric Perturbations into the Lower Troposphere
The linkage between El Ni~ no–Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) through the stratospheric pathway is examined using a global coupled climate model [GFDL Climate Model version 3 (CM3)], with increased vertical resolution and extent in the stratosphere as compared to an earlier model [GFDL Climate Model version 2 (CM2)]. It is demonstrated that the relationship betw...
متن کاملContributions of External Forcings to Southern Annular Mode Trends
An observed trend in the Southern Hemisphere annular mode (SAM) during recent decades has involved an intensification of the polar vortex. The source of this trend is a matter of scientific debate with stratospheric ozone losses, greenhouse gas increases, and natural variability all being possible contenders. Because it is difficult to separate the contribution of various external forcings to t...
متن کامل